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ABSTRACT 

For each p > 1, the supremum, S, of the absolute value of a martingale 
terminating at a random variable X in Lp, satisfies 

(1) E S  < (F(q + 1))"~ II x I1~ (q = P ( p  - 1)-~). 

The maximum, M, of  a mean-zero martingale which starts at zero and 
terminates at X, satisfies 

(2) E M  _-< a¢ II X I1,, 

where % is the unique solution of  the equation t = II z - t IIq for an exponen- 
tially distributed random variable Z with mean 1. trp has other characteriza- 
tions and satisfies limp ~ ~ q -  ~aq = c with c determined by ce c + ~ = 1. Equalities 
in (1) and (2) are attainable by appropriate martingales which can be realized 
as stopped segments of  Brownian motion. A presumably new property of  the 
exponential distribution is obtained en route to inequality (2). 

Introduction 

Let S be the supremum of  a nonnegative submartingale (or - -  which in view 
of  Gilat [6] is equivalent - -  of  the absolute value of a martingale) whose last 
term is the random variable X. According to Theorem 3.4 in Doob [3] (see also 
Hardy's inequality on p. 240 of Hardy, Littlewood and Polya [9]), for p > l, 
the L p - n O r m  of S is no larger than q = p ( p  - 1)- 1 times the Lp-norm of  X. In 

fact, as pointed out by Dubins and Gilat [4] as well as by Hardy, Littlewood 
and Polya on p. 240 of [9], q is the (unattainable, except for the identically 

zero-martingale) least upper bound of  the ratio II S L/II x lie. For p = 1, 
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however, [] S I]~ = ES may well be infinite, unless E IX I log + I XI < oo. It is 
therefore of  interest to investigate how fast can the ratio R(p )  = ES/[[ X [[p 
grow when p approaches 1 from above. Of course, since ES < II s II,, q is 
always an upper bound on R(p) ,  but, as it turns out, q can be further reduced 
to yield 

(1) ES ~ (q!)"q I] X ]I,, 

where q! stands for F(q + I) = [.o xqe-xdx" Since q- l(q!) i/q decreases to e- ~ as 
q ---, oo (i.e. I < p ~ l), the obvious bound q is thus asymptotically improved 

by a factor of e- '. 

In Section 2 inequality (l) is proved, conditions for equality are investigated 

and extremal distributions for X and S, for which equality in (I) is attained, 

are obtained. 

An analogous sharp inequality is obtained for the supremum, M, of a mean- 

zero martingale which starts at zero (so that M >_- 0) and terminates at X. In 

this case the least upper bound of the ratio r(p) = EM/11 X lip is a somewhat 
more complicated function ofp  than the one for the ratio R (p). To introduce 
it, let Z be an exponentially distributed random variable with E Z  = I and, for 
q > 1, set 

trq = inf II Z - t I1~, 
- -  c O < / < 0 o  

then 

(2) EM ~ aq lI X lh, (p > l, q = p(p - l)-l). 

There seems to be no explicit expression for trq as a function of q. Inequality 
(2) and its sharpness are established in Section 4. Investigation of conditions 
for equality in (2) led to the discovery of a curious, presumably hitherto 
unnoticed, property of the exponential distribution, which yielded three 
additional formulations of trq. These results, as well as the asymptotic be- 
haviour of trq, are presented in Section 3 as preliminaries for the discussion of 
inequality (2). 

The proofs of both inequalities, (1) and (2), are based on a result of Blackwell 
and Dubins [2] according to which the Hardy and Littlewood [8] maximal 
function, corresponding to (the distribution of)  the last term of a martingale, 
stochastically dominates the maximum of every martingale terminating with 
that distribution. It is an easy corollary that the Blackwell-Dubins result 
remains valid if in its statement, martingale is replaced by submartingale. The 
attainability of equality in both (1) and (2) then follows from Dubins and Gilat 
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[4] according to which, for every distribution with finite mean, there exists a 
martingale terminating with that distribution, whose maximum is distributed 
like the Hardy and Littlewood maximal function of its terminal distribution. 
These ideas are reviewed in Section 1. The rest of the proof is easy sailing 
through Hrlder's inequality with a careful analysis of conditions for equality to 
derive the extremal distributions. The final Section 5 is devoted to indicating 
how equality in (1) and (2) can be attained by a segment of Brownian motion 
determined by an appropriate stopping time. 

Recently, inequality (1) was independently obtained by Jacka [ 10] using an 
entirely different method of proof. For the interesting special case p = q = 2, 
both inequalities (1) and (2) were recently obtained by Dubins and Schwarz 
[5]. This article was motivated by the desire to extend the results of [5]. 

1. Review of the main tools of proof 

In this section, the Hardy and Littlewood maximal function and its role in 
martingale theory are briefly reviewed. For further details the reader is referred 
to Gilat [7]. 

Given a random variable X with a finite mean, let f--- fx be the (essentially 
unique) nonincreasing function on (0, 1), whose distribution (with respect to 
Lebesgue measure) is the same as the distribution of X. The function F = Fx 
defined by 

F(x) =-1 f ' f ( t )d t  ( 0 < x  =< 1) 
X J 0  

is then the Hardy and Littlewood (HL for short) maximal function associated 
with (the distribution of) X. 

THEOREM I. 1 (Blackwell and Dubins [2]). The Lebesgue-distribution of Fx 
stochastically dominates the supremum of every martingale whose last term is 
distributed like X. 

COROLLARY 1.1. Theorem 1.1 remains valid when, in its statement, 
martingale is replaced by submartingale. 

PROOF. If (Xt} is a submartingale adapted to the filtration {~} and X is 
an integrable random variable such that E ( X I ~  ) >-_ XI for all t, then the 
martingale {E(XI~)}  majorizes the given submartingale {At}. Con- 
sequently, by Theorem 1.1, suptE(X I~), and a fortiori suptXt, is 
stochastically dominated by the HL maximal function ofE(X 1 3~®), where ,~® 
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is, of course, the smallest sigma algebra containing U ~ .  Applying now 
Theorem 1.1 to the martingale-pair (E(X [ :~r®), X) establishes the corollary. [] 

THEOREM 1.2 (Dubins and Gilat [4]). For every distribution with finite 
mean, there exists a martingale, whose last term has the given distribution 
and whose supremum is distributed like the HL maximal function of  that 
distribution. 

Furthermore, i f  the initially given distribution is supported in (0, ~) ,  then the 
martingale, whose existence is claimed, can be made nonnegati ve. 

2. Proof of inequality (1), conditions for equality and extremal distributions 

Let S and X be as in the opening sentence of the introduction. Here and 
throughout the rest of the paper, for a > O, a! is used to abbreviate F(a + 1) = 
Joxae-xdx; and fo rp  > 1, q = p(p - 1) -1 

THEOREM 2.1. 
(i) For every p > 1, ES < (q!)l/q II x I1 . 

(ii) For each p > 1, there exists a nonnegative (proper) martingale for 
which equafity holds in (i). 

(iii) In the extremal case of equality in (i), the distributions of  X and S are 
uniquely determined (up to a common scale factor) as follows: X must ha ve the 
Weibull distribution with shape parameter p - 1, i.e. for some 2 > O, 

P(X > y) = exp[ - (Ay) n- I1, y > O. 

To describe the corresponding extremal distribution for S, let Z be an exponen- 
tial random variable with mean 1, then S must be distributed like 

2 -1 fo  ~ (t + Z)q-te-tdt.  

NOT~.. For p = 1 + n-1 (n being a positive integer), the last integral 
becomes a polynomial in Z,  of degree n, with easily identifiable coefficients. In 
the special case, p = q = 2, treated in [5], (i) and (ii) yield v/2 as the attainable 
least upper bound of the ratio ES/II x 112 whereas (iii) says that equality can 
be attained only if X is exponentially distributed and S is distributed 

like X + EX. 

PROOF. Given a nonnegative submartingale with last term X and 

supremum S, let f = fx and F = Fx be the functions introduced in Section 1. 
By Theorem 1.1, 



274 D. GILAT Isr. J. Math. 

Yo' ) Y: (2.1) ES  < F(x )dx  ffi t)dt dx = f(x)ln dx, 

where the last equality is obtained by changing order of integration ( f >  0 
because X > 0). Assuming X ELp (of the probability space on which it is 
defined), hencefELp(0, 1), and applying H61der's inequality, one obtains 

fo' (2.2) f ( x ) l n l  dx  < [[ f llp = (ql)~'¢ ll f ll, = (q!)l/° ll X l[,. in 1 
x x .  

Combining (2.2) and (2.1) establishes statement (i) of Theorem 2.1. 

REMARK. Hopefully no confusion arises from using [] • I[p to denote both 
the L f  norm of the Lebesgue unit interval and the Lr-norm of the probability 
space on which X happens to be defined. This practice will be used in the 
sequel without further comment. 

To obtain equality in (i), equalities must be attained in both (2.1) and (2.2). 
As for the H61dcr-incquality in (2.2), recall that equality holds if f f  is 
proportional to (In(I/x)) q, i.e. 

(tln ) for s o m e  ;t > 0. 

Since the Lebesgue-distribution of In(l/x) is exponential, the stated Weibull 
distribution is obtained forf. Now use Theorem 1.2 to construct the nonnega- 
tive martingale corresponding to this Weibull distribution to also obtain 
equality in (2.1). According to Theorem 1.2, the S of this martingale is 
distributed like the HL maximal function of the said Weibull distribution. An 
elementary change of variable of integration then yields the representation 
stated in (iii) for the extremal distribution of S. [] 

3. A digression about the exponential distribution 

Suppose Y is a random variable with finite second moment and let L(t)  = 
[I Y - t [I 2, - oo < t < oo. It is then both well known and elementary that the 

function L has a unique minimum at t -  m----mean of Y and rain L = 
L ( m )  = a----standard deviation of Y. If in addition a -- m, as is for example 
the case when Y is exponentially distributed, then the function L has the 
nice property 

(3.1) minimum ofL = minimizer of L, 



Vol. 63, 1988 EXPECTED MAXIMUM OF A MARTINGALE 275 

where minimizer of  L is the point at which L attains its min imum.  Geometri- 
cally, (3.1) means that the lowest point on the graph of L lies on the diagonal 
D = {(z, y) : y ffi x} of  the plane. It turns out that for the exponential dis- 
tribution the validity of(3.1) is not restricted to the second moment .  Formally, 
let Y be a random variable with finite qth moment  (q ->_ 1) and set Lq(t) -- 
]] Y - t ]]q, - ~ < t < oc. It is easy to verify that Lq is convex, has no 

intervals of constancy and Lq(t) tends to + ¢ as t --* + ~ .  Consequently Lq 
has a unique minimum.  Denote by mq the value of t at which Lq attains its 
m i n i m u m  and let aq = Lq(mq) -~ min Lq. 

PROPOSmO~ 3.1. It Y is either uniformly distributed on the two-point set 
{0, 2m } with m > O, or exponentially distributed, then 

(,)  a~=mq f o r a l l q >  l; i . e . ( 3 .1 ) ,w i thL=Lq ,  holds foral lq> l. 

REMARKS. (1) I do not know whether this property of  the exponential 

distribution has ever been noticed before. 
(2) The family of functions {Lq : q > 1 } is increasing in q, therefore their 

min ima aq, are increasing. Consequently, if (,) is valid for Y, then mq is 
increasing. If  (.) holds and mq is bounded,  then one can prove that mq is 
necessarily constant, say m,  in which case Yhas the symmetric distribution on 
the two-point set {0, 2m}. This partial converse to Proposition 3.1 was 
obtained jointly with Jon Aaronson. 

(3) On the other hand, I do not know to what extent does property (.) 
characterize the exponential distribution when mq is unbounded.  This prob- 
lem will be studied elsewhere. 

PROOF OF PROPOSITION 3.1. Property (*) is obviously invariant under 
(positive) scale change. Consequently it suffices to prove (.) for the symmetric 
distribution on {0, 2} and for the exponential distribution with mean 1. In the 
first case, a trivial calculation shows that mq -- ~rq -- 1 for all q > 1. For the 
second case, let Z be an exponentially distributed random variable with 
E Z  = 1 and set q~q(t) = (Lq(t)) q, then 

~0q(t) = E I Z - t I q 

f0 = (x - t)°e-xdx + (t - x)qe-Xdx 
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Differentiation with respect to t yields 

~0~(t) -- t q - ~0q(t). 

Since q~q is smooth (in addit ion to being convex, having no intervals 
of constancy and satisfying ~0q( _+ oo)= + oo), its unique minimum,  hence 
also that of Lq, is attained at the unique solution of the equation (o~(t) = O. 
By the foregoing this is equivalent to (~0q(t)) ~/q = L q ( t ) = t .  Thus mq 

is the unique solution of the equation Lq( t )=t  and consequently 
aq = m i n  Lq = Lq(mq) = mq. [] 

The next result shows that for an exponential distribution, mq is sympto- 
tically a linear function of q, and identifies its asymptotic slope. 

PROPOSITION 3.2. For the exponential distribution with mean 1, 
limq_~(mq/q) = c, where c is determined by the equation In c + c + 1 = 0. 
Numerically, c - 0.27846 < e -~ "-- 0.36788 = limq_~ q-~(q!)~/q. 

PROOF. Recall from the proof  of the previous proposition that mq is 
defined as the unique t which satisfies the equation 

( f 0 )  t q = E I Z - t I q = e- '  q! + zqeXdx 

or, equivalently (multiplying by e' and integrating by parts), 

2' tqe t = q! + tqe e _ q xq- ~ eXdx. 

Thus mq can be characterized by the equation 

m¢ 
(3.2, q [ = q ~  x q - ' e X d x = f  'eXd(x'), 

or, by putting x = mqy in the last integral, 

£' q[ = (mq)  q em,'d(yq). 

Anticipating the conclusion of  the proposition, set mq = qc(q) in the last 
equation and take the qth root on both of its sides to obtain 

l (q,)'/q = c(q) [ f o' (eC")Y,qd( y,)]'/q 
q 

(3.3) 
= c (q)  II eCtq)r IIq;a ,n, 
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where [1 • Ilq.atr') is the Lq-norm of  the measure d(y q) on the unit interval. Now, 

let q tend to oo on both  sides of(3.3):  the left hand side converge (downwards)  

to e-~ while the right hand side is clearly asymptot ic  to c(q) max0~y~ e c¢q)y = 

c(q)e c<q~. Consequently,  c(q)e c<q~ decreases to e -  t as q - -  oo. Since x --- xe  ~ is 

mono tone  increasing, it follows that c(q) is decreasing, and its limit c satisfies 

the equat ion ce ~ = e -  ~ which is equivalent  to In c + c + 1 = 0. [] 

REMARK. I f  Y is exponential  with E Y  = 0, then clearly mq(Y) = Omq(Z). 

4. Proof of inequality (2), conditions for equality and extremal distributions 

In this section, I return to the main  theme of  the article. Let M be the 

supremum of  a mean-zero martingale starting at zero (so that  M > 0) and 

terminating at the random variable X. 

THEOREM 4.1. For everyp > 1, EM <= aq II x lip (q = p(p - 1) -~) where, 
Z being an exponential random variable with EZ  = 1, aq is given by the 
following four equivalent characterizations: 

(i) oq = min_~o<,<~o II z - t IIq. 

(ii) o'~ is the unique t which minimizes the function t ~ II z - t I1¢. 
(iii) o'q is the unique solution of the equation II z - t I1~ = t. 

(iv) aq is determined by the equations (q - 1)! = So" xq-~exdx. 
Moreover, for each p > 1, there is a mean-zero martingale for which equality is 
attained. 

The extremal distributions for X and M, attaining equality, are uniquely 
determined (up to scale): X must be distributed like a positi ve multiple of  go, ( Z), 
where Z is again an exponential random variable with mean 1 and the functions 
g, are given by: g , ( x ) = ( x - t )  q-~ for x > t  and - ( t - x )  q-~ for x < t .  
Furthermore, aq is the unique t for which g,(Z) has mean-zero. When equality 
prevails, M must be distributed as the HL maximal function of  g~,(Z). 

PRoof .  Given a martingale starting at zero and terminating at X, l e t f  = fx 
and F = Fx be, once again, the functions int roduced in Section 1. Then 

F ( I )  = S~ f (x)dx = EX = 0, hence F >= 0. Initially proceed as in the p roof  o f  

Theorem 2.1: First, apply Theorem 1.1 to obtain 

fo' fo'( fo ) EM < F(x )dx= f(u)du dx 

(4.1) 

~01 = fCx)ln!  dx 
X 

for all real t, 
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where the last equality is a consequence of J~ f (x)dx = 0. Next, assuming 
XELp,  hencefELp(0,  1), and applying H61der's inequality, one obtains 

fo' fo'( 1 t) 1 , (4.2) F(x)dx = I n -  - f (x)dx < In - t II f lie. 
X 

Since (4.2) is valid for all t and in view of (4.1), one obtains 

EM < inf I n !  _ t II f Ib, 
- -  o o < t < o o  X q 

which is clearly an equivalent form of the desired inequality. That (i), (ii) and 
(iii) define the same constant is a consequence of Proposition 3.1. That this 
constant is also determined by (iv) follows from formula (3.2) in the proof of 
Proposition 3.2. 

To obtain the extremal distribution for X or, equivalently, for f ,  conditions 
for equality in (4.2) have to be investigated. Since the functions whose product 
is integrated in the middle term of (4.2) are not of constant sign, to obtain 
equality in (4.2), the following two conditions are necessary and sufficient 

(a) Ifl p is proportional to lln(I/x)-tl q, or, equivalently Ifl is pro- 

portional to lln(I/x) - t I q-~. 

(b) The intcgrand, f(x)(In( l/x) - t), has to be nonnegative, or, equivalently, 

since both factors are decreasing, fand (In(I/x) - t) have to change sign (from 

+ to - ) at the same point x, namely at x = e -t. 

Conscqucntly (a) and (b) arc simultaneously satisfied iff f is a positive 

multiple of the function ft given by: 

)' In - t  , O < x _ - - < e  - t ,  

(4.3) ft(x) = 

- t - I n  , e - t < x < l .  

It remains to find a value of t for which J~ ft(x)dx = 0, where f, is defined by 
(4.3). This task is equivalent to finding t such that 

(4.4, fo.- ' ( lnl_tf- '  , _ l f - '  

Making the obvious change of variable (x = e -y) in (4.4), an elementary 
calculation leads to 
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f0 l (4.5) (q - 1)! = xq-leXdx. 

The step leading from (4.4) to (4.5) is of course reversible, hence both 
determine the same value of t. However, by formula (3.2), the t determined by 
(4.5) is precisely mq = aq. 

Now, if one constructs the Dubins-Gilat martingale (of Theorem 1.2) 
corresponding tof~, (which clearly has the same distribution as g,,(Z)), one gets 
a mean-zero martingale whose maximum, M, is the HL maximal function of 
f~,, whose last term is f~, and for which EM = tTq [[ last term Up- [] 

REMARK. It is CUriOUS to note that a2 = 1, thus the ratio between the 
expected maximum of a mean-zero martingale and the standard deviation of 
its last term cannot exceed one. 

5. Optimal embedding in Brownian motion 

In this final section, we indicate how equalities in (1) and (2) can also be 
attained by segments of Brownian motion determined by appropriate stopping 

t imes ,  -- ,p. 
Once the extremal distribution of X is determined, embedding it in Brow- 

nian motions by the A~ema and Yor [1] stopping method (for the case of a 
mean-zero martingale, i.e. inequality (2)), or by its modification for the 
absolute value of Brownian motion due to Don van der Vecht [ 12] (for the case 
ofa nonnegative submartingale, i.e. inequality (1)), yields the desired segments 
of Brownian motion. 

ACKNOWLEDGEMENTS 

I wish to thank the Wiskunde en Informatica Institute of Vrije Universiteit, 
Amsterdam and the Vakgroep Stochastiek of the Delft University of Tech- 
nology for their warm hospitality and support while parts of this research were 
conducted. Special thanks are due to Mike Keane of Delft for helping me 
obtain the asymptotic behaviour of aq in (2). Finally, I wish to thank 
Lester Dubins for calling my attention to Jacka's work after I had informed 
him of(l) .  



280 D. GILAT Isr. J. Math. 

REFERENCES 

1. J. A~ema and M. Yor, (a) Une solution simple au probldme de Skorokhod, (b) Le probldme 
de Skorokhod: complements a l'exposd precedent, Sere. Prob. XIII, Lecture Notes in Math. 721, 
Springer-Vedag, Berlin, 1978. 

2. D. Blackwell and L. E. Dubins, A con verse to the dominated con vergence theorem, Illinois 
J. Math. 7 (1963), 508-514. 

3. J. L. Doob, Stochastic Processes, Wiley, New York, 1953. 
4. L. E. Dubins and D. Gilat, On the distribution of maxima of martingales, Proc. Am. Math. 

Soc. 68 (1978), 337-338. 
5. L. E. Dubins and G. Schwarz, A sharp inequality for semi-martingales and stopping times, 

unpublished manuscript (1987). 
6. D. Gilat, Every nonnegative submartingale is the absolute value of  a martingale, Ann. 

Prob. 5 (1977), 475-481. 
7. D. Gilat, The best bound in the L log L inequality of Hardy & Littlewood and its martingale 

counterpart, Proc. Am. Math. Soc. 97 (1986), 429-436. 
8. G. H. Hardy and J. E. Littlewood, A maximal theorem with function theoretic applications, 

Acta Math. 54 (1930), 81-116. 
9. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd ed., Cambridge University 

Press, 1952. 
10. S. D. Jacka, Optimal stopping and best constants for Doob-like inequalities, Handwritten 

draft, 1987. 
11. I. Meilijson and A. Nadas, Convex majorization with an application to the length oJ 

criticalpaths, J. Appl. Prob. 16 (1979), 671-677. 
12. D. P. van der Vecht, Inequalities for stopped Brownian motion, CWI tract No. 21, 

Amsterdam, 1986. 


